
CST207
DESIGN AND ANALYSIS OF ALGORITHMS

Lecture 9: Branch-and-Bound

Lecturer: Dr. Yang Lu

Email: luyang@xmu.edu.my

Office: A1-432

Office hour: 2pm-4pm Mon & Thur

Branch-and-Bound

¡ The branch-and-bound design strategy is very similar to backtracking in that a state space
tree is used to solve a problem.

¡ The differences are that the branch-and-bound method
1. does not limit us to any particular way of traversing the tree;
2. is used only for optimization problems.

¡ A branch-and-bound algorithm computes a bound at a node to determine whether the node
is promising.
¡ The backtracking algorithm for the 0-1 Knapsack problem is actually a branch-and-bound algorithm.
¡ The promising function returns false if the value of bound is not greater than the current value of

maxprofit.

1

Breadth-First Search

¡ Branch-and-bound is
based on breadth-first
search (BFS).

¡ BFS visits the nodes in a
tree level by level.

¡ It is usually implemented
by using a queue, rather
than recursion (stack).

2

Image source: Figure 6.1, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Outlines

¡ 0-1 Knapsack Problem

¡ The Assignment Problem

¡ The Traveling Salesperson Problem

3

0-1 KNAPSACK PROBLEM

4

Bound

¡ Sort the items in non-increasing order according to the ratio between 𝑣! and 𝑤!.
¡ Suppose the node is at level 𝑖, we first calculate 𝑘 such that the level 𝑘 is the one that would

bring the sum of the weights exceeds𝑊.
¡ Then we have:

𝑡𝑜𝑡𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑤𝑒𝑖𝑔ℎ𝑡 + *
!"#$%

&'%

𝑤! ,

𝑏𝑜𝑢𝑛𝑑 = 𝑝𝑟𝑜𝑓𝑖𝑡 + *
!"#$%

&'%

𝑣! + 𝑊 − 𝑡𝑜𝑡𝑤𝑒𝑖𝑔ℎ𝑡 ×
𝑣&
𝑤&

.

5

Profit from first
𝑘 − 1 items taken

Capacity available
for 𝑘th item

Profit per unit
weight for 𝑘th item

Pruned State Space Tree by BFS

¡ Recall that by using DFS, node (1, 2) was found to be
nonpromising and we did not expand beyond the node.

¡ However, in the case of BFS, node (1, 2) is the third
node visited.
¡ At the time it is visited, the value of maxprofit is only $40.

Because its bound $82 exceeds maxprofit at this point, we
expand beyond the node.

¡ Unlike DFS, in BFS the value of maxprofit can change by
the time we actually visit the children.
¡ In this case, maxprofit has a value of $90 by the time we

visit the children of node (2, 3).

¡ We then waste our time checking these children.

6

Image source: Figure 6.2, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $40 2kg 20$/kg

2 $30 5kg 6$/kg

3 $50 10kg 5$/kg

4 $10 5kg 2$/kg

𝑊 = 16

Pseudocode of a General BFS with Branch-and-Bound Algorithm

7

Pseudocode of BFS Version of
0-1 Knapsack Problem

8

Best-First Search with Branch-and-Bound Pruning

¡ Comparison between breadth-first and best-first search:
¡ Breadth-first: visit the unexpanded node according to its order in the queue.

¡ Best-first: visit the unexpanded node according to its value in the queue.

¡ For 0-1 knapsack problem, best-first search visit the node with maximum bound in
the queue first.
¡ Select the one who has the greatest hope!

9

Pruned State Space Tree by Best-First Search

1. Visit node (0,0).

2. Visit node (1,1).
¡ maxprofit=40.

3. Visit node (1,2).

4. Determine promising, unexpanded node with
greatest bound.

¡ Select node (1,1) to expand.

10

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $40 2kg 20$/kg

2 $30 5kg 6$/kg

3 $50 10kg 5$/kg

4 $10 5kg 2$/kg

Image source: Figure 6.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pruned State Space Tree by Best-First Search

5. Visit node (2, 1).
¡ maxprofit=70.

6. Visit node (2, 2).

7. Determine promising, unexpanded node with
greatest bound.

¡ Select node (2,1) to expand.

11

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $40 2kg 20$/kg

2 $30 5kg 6$/kg

3 $50 10kg 5$/kg

4 $10 5kg 2$/kg

Image source: Figure 6.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pruned State Space Tree by Best-First Search

8. Visit node (3, 1).

9. Visit node (3, 2).

10. Determine promising, unexpanded node with
greatest bound.

¡ Select node (2,2) to expand.

12

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $40 2kg 20$/kg

2 $30 5kg 6$/kg

3 $50 10kg 5$/kg

4 $10 5kg 2$/kg

Image source: Figure 6.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pruned State Space Tree by Best-First Search

11. Visit node (3, 3).
¡ maxprofit=90.

12. Visit node (3, 4).

13. Determine promising, unexpanded node with
greatest bound.

¡ Select node (3, 3) to expand.

13

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $40 2kg 20$/kg

2 $30 5kg 6$/kg

3 $50 10kg 5$/kg

4 $10 5kg 2$/kg

Image source: Figure 6.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pruned State Space Tree by Best-First Search

14. Visit node (4,1).

15. Visit node (4,2).
¡ No promising and unexpanded node exists because the

bound of node (1, 2) is less than maxprofit=90.

14

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $40 2kg 20$/kg

2 $30 5kg 6$/kg

3 $50 10kg 5$/kg

4 $10 5kg 2$/kg

Image source: Figure 6.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pruned State Space Tree by Best-First Search

¡ Using best-first search, we have checked only 11
nodes.
¡ 6 less than the number checked using BFS.

¡ 2 less than the number checked using DFS.

¡ However, there is no guarantee that the node
that appears to be best will actually lead to an
optimal solution.
¡ In this example, node (2, 1) appears to be better than

node (2, 2), but node (2, 2) leads to the optimal
solution.

15

𝒊 𝒗𝒊 𝒘𝒊 𝒗𝒊/𝒘𝒊

1 $40 2kg 20$/kg

2 $30 5kg 6$/kg

3 $50 10kg 5$/kg

4 $10 5kg 2$/kg

Image source: Figure 6.3, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pseudocode of a General Best-First Search with Branch-and-Bound
Algorithm

16

Difference with
BFS version

Pseodocode of Best-First Search Version

¡ Function bound is same.

17

Difference with
BFS version

THE ASSIGNMENT PROBLEM

18

The Assignment Problem

¡ The assignment problem aims to assign 𝑛 people to 𝑛 jobs so that the total cost of the
assignment is as small as possible.
¡ An instance of the assignment problem is specified by an 𝑛×𝑛 cost matrix 𝐶.
¡ Select one element in each row of the matrix so that no two selected elements are in the same column

and their sum is the smallest possible.
job 1 job 2 job 3 job 4

𝐶 =

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

¡ For this example, the optimal solution is 2+6+1+4=13.

19

person a
person d
person c
person d

State Space Tree of the Assignment Problem

¡ The final solution does not depend on the
starting person, we will start with person
a.

¡ We stop expanding the tree when we have
assigned 𝑛 − 1 people because, at that
time, the job of the 𝑛th person is uniquely
determined.
¡ For example, if we have assigned [2, 4, 3],

person d can only be assigned to job 1.

20

start

[1] [2] [3] [4]

[2, 1] [2, 3] [2, 4]

[2, 4, 1] [2, 4, 3]

person a

person b

person c

The Assignment Problem

¡ It seems that this problem can be solve by greedy approach.
¡ Always find the smallest cost in the unselected columns and rows.

¡ However, a counterexample can be easily obtained:

𝐶 =

10 10 2 10
10 10 2 10
2 2 1 2
10 10 2 10

¡ The greedy solution is 1+10+10+10=31, while the optimal solution is 2+2+10+10=24.

21

Lower Bound of Total Cost

¡ In this case, the bound is a lower bound.

¡ The lower bound is calculated as the sum of minimum cost of each person.
person a: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 9, 2,7,8 = 2
person b: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 6,4,3,7 = 3
person c: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 5,8,1,8 = 1
person d: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 7,6,9,4 = 4

¡ Therefore, a lower bound of the total cost is:
2 + 3 + 1 + 4 = 10.

¡ Any solution can’t be smaller than this lower bound.

22

𝐶 =

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

Lower Bound of Total Cost

¡ The lower bound in each node will change according to the assignment.

¡ For example, if person a is assigned to job 1.
person a: 9
person b: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 4,3,7 = 3
person c: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 8,1,8 = 1
person d: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 6,9,4 = 4

¡ Therefore, a lower bound of the total cost after person a being assigned to job 1 is:
9 + 3 + 1 + 4 = 17.

¡ We can thus use this calculation to build the pruned state space tree with best-first search.

23

𝐶 =

9 2 7 8
6 4 3 7
5 8 1 8
7 6 9 4

Pruned State Space Tree with Best-First Search

1. Visit root.

2. Visit node containing [1].

3. Visit node containing [2].

4. Visit node containing [3].

5. Visit node containing [4].

6. Determine promising, unexpanded node with
the smallest bound.

¡ Node containing [2] is selected. We visit its children.

24

start
Bound=10

person a [1]
Bound=17

[2]
Bound=10

[3]
Bound=20

[4]
Bound=18

Pruned State Space Tree with Best-First Search

7. Visit node containing [2, 1].

8. Visit node containing [2, 3].

9. Visit node containing [2, 4].

10. Determine promising, unexpanded node
with the smallest bound.

¡ Node containing [2, 1] is selected. We visit its
children.

25

start
Bound=10

person a [1]
Bound=17

[2]
Bound=10

[3]
Bound=20

[4]
Bound=18

person b [2, 1]
Bound=13

[2, 3]
Bound=14

[2, 4]
Bound=17

Pruned State Space Tree with Best-First Search

11. Visit node containing [2, 1, 3].
¡ Compute total cost: 13. mincost=13.

12. Visit node containing [2, 1, 4].
¡ Compute total cost: 25.

13. Determine promising, unexpanded
node with the smallest bound.

¡ There are no more promising,
unexpanded nodes, because all the
nodes have higher bound than mincost.

26

start
Bound=10

person a [1]
Bound=17

[2]
Bound=10

[3]
Bound=20

[4]
Bound=18

person b [2, 1]
Bound=13

[2, 3]
Bound=14

[2, 4]
Bound=17

[2, 1, 3]
Cost=13

[2, 1, 4]
Cost=25

solution

person c

THE TRAVELING SALESPERSON PROBLEM

27

The Traveling Salesperson Problem

¡ A tour (also called a Hamiltonian circuit) in a directed graph is a path from a vertex
to itself that passes through each of the other vertices exactly once.

¡ An optimal tour in a weighted, directed graph is such a path of minimum length.

¡ The Traveling Salesperson problem (TSP) is to find an optimal tour in a weighted,
directed graph when at least one tour exists.
¡ Because the weights are considered, it is the optimization version of Hamiltonian circuit

problem.

¡ For example:
𝑙𝑒𝑛𝑔𝑡ℎ 𝑣!, 𝑣", 𝑣#, 𝑣$, 𝑣! = 22
𝑙𝑒𝑛𝑔𝑡ℎ 𝑣!, 𝑣#, 𝑣", 𝑣$, 𝑣! = 26
𝑙𝑒𝑛𝑔𝑡ℎ 𝑣!, 𝑣#, 𝑣$, 𝑣", 𝑣! = 21

28

Image source: Figure 3.16-17, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

State Space Tree

¡ Because the starting vertex is irrelevant to the length of an
optimal tour, we will consider 𝑣! to be the starting vertex.

¡ The state space tree can be constructed by:
¡ Each vertex other than 𝑣% is tried as the first vertex at level 1.
¡ Each vertex other than 𝑣% and the one chosen at level 1 is tried as

the second vertex at level 2.

¡ …

¡ We stop expanding the tree when there are 𝑛 − 1 vertices
in the path stored at a node because, at that time, the 𝑛th
vertex is uniquely determined.
¡ For example, the far-left leaf represents the tour [1, 2, 3, 4, 5, 1]

because once we have specified the path [1, 2, 3, 4], the next
vertex must be 𝑣,.

29

Image source: Figure 6.5, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Lower Bound of Tour Length

¡ In this case, the bound is a lower bound.
¡ In any tour, the length of the edge taken when leaving a vertex must be at least

as great as the length of the shortest edge from that vertex.
𝑣%: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 14, 4,10,20 = 4
𝑣-: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 14,7,8,7 = 7
𝑣.: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 4,5,7,16 = 4
𝑣/: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 11,7,9,2 = 2
𝑣,: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 18,7,17,4 = 4

¡ Because a tour must leave every vertex exactly once, a lower bound on the
length of a tour is the sum of these minimums. Therefore, a lower bound on the
length of a tour is

4 + 7 + 4 + 2 + 4 = 21.

¡ This is not to say that there is a tour with this length. Rather, it says that there
can be no tour with a shorter length.

30

This adjacency matrix
assumes that every
vertex is connected

Lower Bound of Tour Length

¡ Suppose we have visited the node containing [1, 2].

¡ Any tour obtained by expanding beyond this node has the following
lower bounds on the costs of leaving the vertices:

𝑣$: 14
𝑣%: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 7,8,7 = 7
𝑣&: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 4,7,16 = 4
𝑣': 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 11,9,2 = 2
𝑣(: 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 18,17,4 = 4

¡ A lower bound on the length of any tour, obtained by expanding beyond
the node containing [1, 2], is the sum of these minimums, which is

14 + 7 + 4 + 2 + 4 = 31.

31

This adjacency matrix
assumes that every
vertex is connected

no path to 𝑣!

no path to 𝑣"

Pruned State Space Tree with Best-First Search

1. Visit node containing [1].

2. Visit node containing [1, 2].

3. Visit node containing [1, 3].

4. Visit node containing [1, 4].

5. Visit node containing [1, 5].

6. Determine promising, unexpanded node with
the smallest bound.

¡ Node containing [1, 3] is selected. We visit its children.

32

Image source: Figure 6.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pruned State Space Tree with Best-First Search

7. Visit node containing [1, 3, 2].

8. Visit node containing [1, 3, 4].

9. Visit node containing [1, 3, 5].

10. Determine promising, unexpanded node
with the smallest bound.

¡ Node containing [1, 3, 2] is selected. We visit its
children.

33

Image source: Figure 6.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pruned State Space Tree with Best-First Search

11. Visit node containing [1, 3, 2, 4].
¡ Compute tour length, minlength=37.

12. Visit node containing [1, 3, 2, 5].
¡ Compute tour length, minlength=31.

13. Determine promising, unexpanded node
with the smallest bound.

¡ Node containing [1, 3, 4] is selected. We visit its
children.

34

Image source: Figure 6.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pruned State Space Tree with Best-First Search

14. Visit node containing [1, 3, 4, 2].
¡ Compute tour length, minlength=31.

15. Visit node containing [1, 3, 4, 5].
¡ Compute tour length, minlength=31.

16. Determine promising, unexpanded node
with the smallest bound.

¡ Node containing [1, 4] is selected. We visit its
children.

35

Image source: Figure 6.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pruned State Space Tree with Best-First Search

17. Visit node containing [1, 4, 2].

18. Visit node containing [1, 4, 3].

19. Visit node containing [1, 4, 5].

20. Determine promising, unexpanded node
with the smallest bound.

¡ Node containing [1, 4, 5] is selected. We visit its
children.

36

Image source: Figure 6.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pruned State Space Tree with Best-First Search

21. Visit node containing [1, 4, 5, 2].
¡ Compute tour length, minlength=30.

22. Visit node containing [1, 4, 5, 3].
¡ Compute tour length, minlength=30.

23. Determine promising, unexpanded node
with the smallest bound.

¡ There are no more promising, unexpanded nodes,
because all the nodes have higher bound than
minlength.

37

Image source: Figure 6.6, Richard E. Neapolitan, Foundations of Algorithms (5th Edition), Jones & Bartlett Learning, 2014

Pseudocode of Best-First Search
Version of TSP

¡ Again, select the one
who has the greatest
hope!
¡ The key idea of branch-

and-bound.

¡ bound and length are
easy to implement.

38

Conclusion

After this lecture, you should know:
¡ What is the difference between breadth-first search and best-first search.

¡ What is the difference between backtracking and branch-and-bound.

¡ What kind of problem that we can use branch-and-bound.

¡ How can we use the bound to eliminate unnecessary node checking.

39

Assignment

¡ No tutorial this week. Just implementing 0-1 knapsack problem by branch-and-bound
in Python and submit to Attendance Quiz.

¡ Assignment 4 is released. The deadline is 18:00, 15th June.

40

Thank you!

¡ Any question?

¡ Don’t hesitate to send email to me for asking questions and discussion. J

41

Acknowledgement: Thankfully acknowledge slide contents shared by Prof. Xuemin Hong

